

at HOT SUMMER DAYS by INLET AIR COOLING SYSTEMS

RAHAVARD ENERGY

JUNE 2022

Inlet Air Cooling Systems

Every 1.5 °C increase in ambient air temperature, decreases 1% of turbine output power!

During Hot Summer Days:

• Air Mass Flow Rate Decreases

• Compressor Power Consumption Increases

Gas Turbine Output Power Decreases

5000 MW difference between Winter and Summer production capacity, due to Increase of ambient temperature!

Comparision of Production Capacity of different Iranian Power Plants in Summer & Winter (by March 2017) 21000 Summer 18000 Winter 15000 12000 ₹ 9000 6000 3000 0 Disel Hydro Combined Gas Steam Renewable Wind Cycle & Nucl.

Source: TAVANIR power generation statistical reports, 2017

Gas Turbine Power Augmentation by Inlet Air Cooling Systems

WHAT GAN WE DO P

To Bring <u>Spring</u> in <u>Summer</u>, with:

GAS TURBINE INLET AIR COOLING TECHNOLOGIES

Inlet Air Cooling Systems

Inlet Air Cooling Systems

Inlet Cooling Process in Psychrometric Chart

Gas Turbine Power Augmentation by Inlet Air Cooling Systems

GLOBAL EXPERIENCE:

EVAPORATIVE COOLING (MEDIA,FOG & WET COMP.): - MORE THAN 2000 UNITS COMPRESSION CHILLERS: - AROUND 400 UNITS ABSORPTION CHILLERS - LESS THAN 30 UNITS

Inlet Air Cooling Systems

TOTAL EXPERIENCE IN IRAN

***AS OF JUNE 2022**

MEDIA: 80 UNITS FOG: 35 UNITS WET COMP.: 7 UNITS

TURBINE TYPES EQUIPPED WITH INLET COOLING:

GE F5, F6, F9, HITACHI, MITSUBISHI, ABB, ALSTOM, ANSALDO V94.2, ...

Inlet Air Cooling Systems

RESULTS (ACHIEVEMENTS):

14-17% POWER INCREASE 1- 1.5% EFFICIENCY IMPROVEMENT 15-20 °C INLET AIR COOLING 10-12% NOx REDUCTION

Inlet Air Cooling Systems

✓ MOST USED INLET COOLING SYSTEM

WHOLE SYSTEM SCHEMATIC DIAGRAM

Inlet Air Cooling Systems

SAMPLE PHOTOS OF MEDIA COOLING INSTALLED ON DIFFERENT TYPES OF GAS TURBINES, BY *RAHAVARD ENERGY* CO.

Inlet Air Cooling Systems

SAMPLE PHOTOS OF MEDIA COOLING INSTALLED ON DIFFERENT TYPES OF GAS TURBINES, BY *RAHAVARD ENERGY* CO.

MEDIA COOLING SYSTEMS:

- ✓ ADVANTAGES:
- NO NEED TO DEMINERALIZED WATER (POTABLE ENOUGH!)
- QUICK INSTALLATION
- SHORT TURBINE DOWN TIME FOR ERECTION
- LOW MAINTENANCE AND OPERATION COST
- LOW PARASITIC ELECTRICAL CONSUMPTION (<1%)
- LOW PRESSURE DROP (<100Pa)

× **DISADVANTAGES:**

REQUIREMENT OF WATER (1 m³/h per 1 MW power increase)

Inlet Air Cooling Systems

MAIN WATER TREATMENT SYSTEM FOR PRODUCTION OF POTABLE WATER FOR MEDIA COOLING: RO SYSTEM

RO SYSTEMS INSTALLED IN DIFFERENT PROJECTS BY *RAHAVARD ENERGY* CO.

Inlet Air Cooling Systems

WATER STORAGE TANKS FOR MEDIA SYSTEM

STORAGE TANKS MANUFACTURED IN DIFFERENT PROJECTS BY RAHAVARD ENERGY CO.

Inlet Air Cooling Systems

WET COMPRESSION SYSTEM,

✓ THE BEST CHOICE, IF:

YOUR TURBINE IS LOCATED IN HUMID REGION (COASTAL AREA)

Inlet Air Cooling Systems

WET COMPRESSION SYSTEM, FOREIGN PARTNER: ENCLUYEOU

SPRAY AT BELLMOUTH

HIGH PRESSURE PUMP SKID

Inlet Air Cooling Systems

REFRIGERATIVE (CHILLING) SYSTEMS, ALTERNATIVE COOLING FOR EVAPORATIVE SYSTEMS, IF: THERE IS NOT ENOUGH WATER AVAILABLE AT YOUR PLANT

CHILLING SYSTEMS:

- ✓ ADVANTAGES:
- NO NEED TO WATER (AIR COOLED CHILLERS)
- NO COOLING DEPENDANCY TO AMBIENT HUMIDITY
- MORE POWER OUTPUT INCREASE

× **DISADVANTAGES**:

- HIGH INVESTMENT COSTS
- HIGHER MAINTENANCE & OPERATION COSTS, COMPARED TO EVAPORATIVE SYSTEMS
- MODIFICATION OF INLET AIR DUCT FOR COILS INSTALLATION

Gas Turbine Power Augmentation by Inlet Air Cooling Systems

CHILLING SYSTEMS:

INSTALLATION OF COOLING COILS IN THE DUCT, AFTER FILTERS

MODIFICATION/EXPANSION OF DUCT AT LOCATION OF COILS, TO DECREASE AIR VELOCITY

Inlet Air Cooling Systems

CHILLING SYSTEMS:

AIR COOLED CONDENSERS

FOREIGN PARTNER:

Gas Turbine Power Augmentation by Inlet Air Cooling Systems

WE PROVIDE ALL INLET COOLING SOLUTIONS FOR YOUR GAS TURBINE!

You can reach us at:

www.rahavard-energy.com

info@rahavard-energy.com